Publications
Publications
2024
- Deng, N., Yan, Y., Ji, C., & Noack, B. R. (2024). Feature-based manifold modeling for the quasiperiodic wake dynamics of a pair of side-by-side cylinders. Physics of Fluids, 36(9).
- Reumschüssel, J. M., Li, Y., zur Nedden, P. M., Wang, T., Noack, B. R., & Paschereit, C. O. (2024). Experimental jet control with Bayesian optimization and persistent data topology. Physics of Fluids, 36(9).
- Jiang, Z., Cornejo Maceda, G. Y., Li, Y., Shaqarin, T., Gao, N., & Noack, B. R. (2024). Jet mixing optimization using a flexible nozzle, distributed actuators, and machine learning. Physics of Fluids, 36(9).
- Wang, X., Cornejo Maceda, G. Y., Liu, Y., Hu, G., Gao, N., Raps, F., & Noack, B. R. (2024). Coarse-graining characterization of the room flow circulations due to a fan-array wind generator. Physics of Fluids, 36(8).
- Hou, C., Deng, N., & Noack, B. R. (2024). Dynamics-augmented cluster-based network model. Journal of Fluid Mechanics, 988, A48.
- Wang, Q., Yan, L., Hu, G., Chen, W., Rabault, J., & Noack, B. R. (2024). Dynamic feature-based deep reinforcement learning for flow control of circular cylinder with sparse surface pressure sensing. Journal of Fluid Mechanics, 988, A4.
- Li, S., Liu, Y., Jiang, Z., Hu, G., Noack, B. R., & Raps, F. (2024). Aerodynamic Characterization of a Fan-Array Wind Generator. AIAA Journal, 62(1), 291-301.
- Li, P., Yang, Y., Li, Q., Arcondoulis, E. J., Noack, B. R., & Liu, Y. (2024). Effect of blade number on rotor efficiency and noise emission at hovering condition. Physics of Fluids, 36(2).
- Yang, Y., Liang, Y., Pröbsting, S., Li, P., Zhang, H., Huang, B., … & Noack, B. R. (2024). Sizing of Multicopter Air Taxis—Weight, Endurance, and Range. Aerospace, 11(3), 200.
2023
- Mendez, M. A., Ianiro, A., Noack, B. R. & Brunton, S. L. (2023) “Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning“. Cambridge University Press.
- Semaan, R., Oswalds, P., Cornejo Maceda, G. Y. &l; Noack, B.~R. (2023) Aerodynamic optimization of a generic light truck under unsteady conditions using gradient‑enriched machine learning control. Experiments in Fluids 64, 59:1-27
- Huang, J., Zeng, W., Xiong, J., Noack, B.R., Hu, G., Liu, S., Xu, Y. & Cao, H. (2023) Symmetry-informed reinforcement learning and its application to the attitude control of quadrotors. IEEE Transactions on Artificial Intelligence.
- Shaqarin, T. & Noack, B.~R. (2022) A fast converging particle swarm optimization through targeted, position-mutated, elitism (PSO-TPME). International Journal of Computational Intelligent Systems 16 article 6:1-17.
- Cornejo Maceda, G. Y., Varon, E., Lusseyran, F. & Noack, B. R. (2023) Stabilization of a multi-frequency open cavity flow with gradient-based machine learning control. Journal of Fluid Mechanics 955, A20:1–49.
- Farzamnik, E., Ianiro, A., Discetti, S., Deng, N., Oberleithner, K., Noack, B. R. & Guerrero, V. (2022) From snapshots to manifolds – A tale of shear flows. Journal of Fluid Mechanics 955, A34:1:24.
- Wenjie Chen, Qiulei Wang, Lei Yan, Gang Hu, Bernd R. Noack. (2023) Deep reinforcement learning-based active flow control of vortex-induced vibration of a square cylinder. Physics of Fluids May 35 (5): 053610.
- Wang, T.Y., Yang, Y., Chen, X.W., Li, P.Y., Iollo, A., Cornejo Maceda, G.Y. & Noack, B.R. (2023) Cluster-based control for net drag reduction for the fluidic pinball. Physics of Fluids 35 055105:1–14.
- Wang, X., Cornejo Maceda, G. Y., Deng, N. & Noack, B.R. (2023) Cluster-based control for net drag reduction for the fluidic pinball. Physics of Fluids 35 023601:1–16.
2022
- Blanchard, A., Cornejo Maceda, G. Y., Fan, D., Li, Y., Zhou, Y., Noack, B. R. & Sapsis, T. (2022) Bayesian optimization of active flow control. Acta Mechanica Sinica 37, 1786-1798.
- Zhang, W.W. & Noack, B. R. (2022) Artificial intelligence in fluid mechanics. Acta Mechanica Sinica 37, 1715-1717.
- Cornejo Maceda, G. Y., Lusseyran, F. & Noack, B. R. (2022) “xMLC—A Toolkit for Machine Learning Control” Series ‘Machine Learning Tools for Fluid Mechanics’ 2, Technische Universität Braunschweig, Germany.
- Deng, N., Noack, B. R., Morzynski, M., & Pastur, L.~R. (2022) Cluster-based hierarchical network model of the fluidic pinball — Cartographing transient and post-transient, multi-frequency, multi-attractor behaviour. Journal of Fluid Mechanics 934, A24, 1–44.
- Li, S.Q., Li, W. & Noack, B.~R. (2022) Non-Linear, control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball. Journal of Fluid Mechanics 952, A36.
- Li, Y., Cui, W., Jia, Q., Li, Q., Yang, Z. & Noack, B. R. (2022) Optimization of active drag reduction for a slanted Ahmed body in a high-dimensional parameter space. Journal of Fluid Mechanics 932 A7:1–48.
- Li, S.Q., Li, W. & Noack, B.~R. (2022) Least-order representation of control-oriented flow estimation exemplified for the fluidic pinball. Journal of Physics: Conference Series 2367, article 012024:1–8
- Castellanos, R., Cornejo Maceda, G. Y., De La Fuente, I., Noack, B. R., Ianiro, A., & Discetti, S. (2022). Machine-learning flow control with few sensor feedback and measurement noise. Physics of Fluids 34(4),
- Hou, C., Deng, N. & Noack, B.~R. (2022) Trajectory-optimized cluster-based network model for the sphere wake. Physics of Fluids 34, 085110:1–19.
- Wang, Q.L., Yan, L., G. Hu, Li C., Xiao, Y.Q., Xiong, H., Rabault, J. & Noack, B.R. (2022) DRLinFluids—An open-source python platform of coupling Deep Reinforcement Learning and OpenFOAM. Physics of Fluids 34(8), 081801:1–15.
2021
- Fernex, D., Semaan, R. & Noack, B. R. (2021) “Generalized cluster-based network model for an actuated turbulent boundary layer.” Paper at the Proceedings of the 2021 AIAA SciTech Forum, Nashville, TN, USA.
- Fernex, D., Weiner, A., Noack, B., & Semaan, R. (2021). Sparse Spatial Sampling: A mesh sampling algorithm for efficient processing of big simulation data. In AIAA Scitech 2021 Forum (p. 1484).
- Blanchard, A. B., Cornejo Maceda, G. Y., Fan, D., Li, Y., Zhou, Y., Noack, B. R., & Sapsis, T. P. (2021). Bayesian optimization for active flow control. Acta Mechanica Sinica, 1-13.
- Cornejo Maceda, G.~Y., Li, Y., Lusseyran, F., Morzynski, M. & Noack, B. R. (2021) Stabilization of the fluidic pinball with gradient-based machine learning control. Journal of Fluid Mechanics 917, article A42:1-43.
- Deng, N., Noack, B. R., Morzynski, M., & Pastur, L. R. (2021) Galerkin force model for transient dynamics of the fluidic pinball. Journal of Fluid Mechanics 918, article A04:1–37
- Hao Li, Daniel Fernex, JianGuo Tan, Marek Morzynski & Noack, B. R. (2021) Cluster-based network model. Journal of Fluid Mechanics 906, article A21, 1-41.
- Qiao, Z. Minelli, G., Noack, B. R., Krajnovic, S., & Chernoray, V. (2021) “Multi-frequency aerodynamic control of a yawed bluff body optimized with a genetic algorithm.” Journal for Wind Engineering and Industrial Applications 212, article 104600
- Shaqarin, T., Oswald, P., Noack, B. R., & Semaan, R. (2021). Drag reduction of a D-shaped bluff-body using linear parameter varying control. Physics of Fluids, 33(7).
- Fernex, D., Noack, B. R., & Semaan, R. (2021) “Cluster-based network models-From snapshots to complex dynamical systems” Science Advances 7 (25), eabf5006:1..10.
2020
- Brunton, S. L., Noack, B. R. & Koumoutsakos, P. (2020) “Machine learning for fluid mechanics”. Annual Reviews of Fluid Mechanics 52., 477–508
- Albers, M., Meysonnat, P. S., Fernex, D., Semaan, R., Noack, B. R. & Schröder, W. (2020) Drag reduction and energy savings by spanwise travelling transversal surface waves for flat plate flow. Flow, Turbulence and Combustion (online).
- Deng, N., Noack, B. R., Morzynski, M., & Pastur, L.~R. (2020) Low-order model for successive bifurcations of the fluidic pinball. Journal of Fluid Mechanics 884, A37.
- Minelli, G., Dong, T., Noack, B. R. & Krajnovic, S. (2020) Upstream actuation for bluff body wake control driven by a genetically inspired optimization. Journal of Fluid Mechanics, 893.
- Zhou, Y, Fan, D., Zhang, B., Li, R. & Noack, B. R. (2020) Artificial intelligence control of a turbulent jet. Journal of Fluid Mechanics 897, article A27, 1-46.
- Raibaudo, C, Zhong, P., Noack, B. R., & Martinuzzi, R. J.. (2020) “Machine learning strategies applied to the control of a fluidic pinball.” Physics ofFluids 32, article 015108.
- Tan, J., Li, H., & Noack, B. R. (2020). On the cavity-actuated supersonic mixing layer downstream a thick splitter plate. Physics of Fluids, 32(9).
- Fernex, D., Semaan, R., Albers, M., Meysonnat, P., Schröder, W. & Noack, B. R. (2020) Actuation response model from sparse data for wall turbulence drag reduction. Physics Reviews Fluids 5 (7), article 073901.
- Zheng, Q., Wang, J., Noack, B. R., Li, H., Wan, M., & Chen, S. (2020). Vibrational relaxation in compressible isotropic turbulence with thermal nonequilibrium. Physical Review Fluids, 5(4), 044602.
- Lennie, M., Steenbuck, J., Noack, B. R., & Paschereit, C. O. (2019). Cartographing dynamic stall with machine learning. Wind Energy Science Discussions, 2019, 1-31.
Books





- Mendez, M. A., Ianiro, A., Noack, B. R. & Brunton, S. L. (2023) “Data-Driven Fluid Mechanics: Combining First Principles and Machine Learning”. Cambridge University Press.
- Wang, T., Maceda, G. Y. C., & Noack, B. R. (2023). XPDT: A Toolkit for Persistent Data Topology. Technische Universität Braunschweig.
- Cornejo Maceda, G. Y., Lusseyran, F. & Noack, B. R. (2022) “xMLC—A Toolkit for Machine Learning Control” Series ‘Machine Learning Tools for Fluid Mechanics’ 2, Technische Universität Braunschweig, Germany.
- Duriez, T., Brunton, S. L. & Noack, B. R. (2017) “Machine Learning Control – Taming Nonlinear Dynamics and Turbulence.” Series ‘Fluid Mechanics and Its Applications 116, Springer-Verlag.
- Noack, B. R. Morzynski, M. & Tadmor, G.(eds.) (2011) “Reduced-Order Modelling for Flow Control.” Series ‘CISM Courses and Lectures’ 528, Springer-Verlag, Vienna.
- Semaan, R., Fernex, D., Weiner, A. & Noack, B.R. (2011) “xROM — A Toolkit for Reduced-Order Modeling of Fluid Flows.” Series ‘Machine Learning Tools for Fluid Mechanics’ 1, Universitätsbibliothek der Technischen Universität Braunschweig, Germany.
Review articles
Patents
- Y. T. Liu, B. R. Noack, N. Deng, X. Wang, S. Q. Li, and Z. T. Jiang. A fan array device for generating wind fields. China Utility Model Patent, CN 219865511U, 2023.